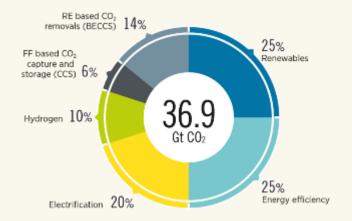
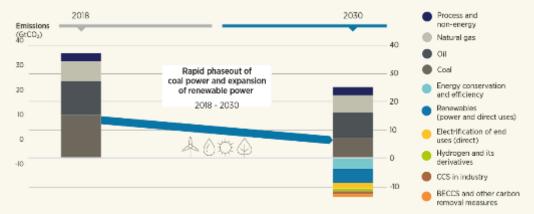
The Next Frontier for Renewable Energy



Gauri Singh

Deputy Director General International Renewable Energy Agency - IRENA


Renewables, efficiency and electrification dominate the energy transition

Reducing emissions by 2050 through six technological avenues

90% of all decarbonisation in 2050 will involve renewable energy through direct supply of low-cost power, efficiency, electrification, bioenergy with CCS and green hydrogen.

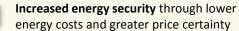
Key milestones and actions for rapid emission reductions

• Ramping up renewables, together with an aggressive energy efficiency strategy, is the most realistic path toward halving of emissions by 2030.

• The **decarbonisation of end-uses** needs to make much faster progress, with many solutions provided through electrification, hydrogen and the direct use of renewables.

• A comprehensive set of policies is needed to achieve the necessary levels of deployment by 2030 and maximise benefits.

Community Energy Benefits


Taking place on both large and small scales, a community energy initiative incorporates at least two of the following elements:

Community energy can accelerate renewables deployment in a just and inclusive manner:

Socio-economic gain through investment, job creation and improved welfare

Accelerated access to renewable energy through citizen-driven innovation

Broadened participation in the energy system

Case studies

A number of successful initiatives in Europe demonstrate how community energy can drive the energy transition while delivering multiple benefits locally:

UrStrom

Location/policy environment – UrStrom is driving the local energy transition in Mainz, Germany through democratically planned and owned solar PV projects.

Socio-economic impact – Leading the transport revolution. UrStrom has launched an e-car service and helpad astablish national and European organisations focused on e-mobility.

Som Energia

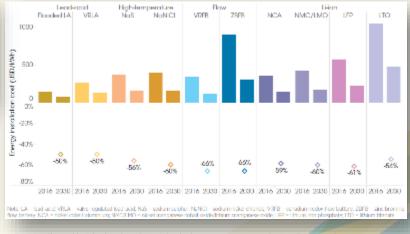
Location/policy environment - Initiatives like Generation KWh highlight how Som Energia has overcome policy barriers by developing innovative ways for its members to finance renewable energy projects.

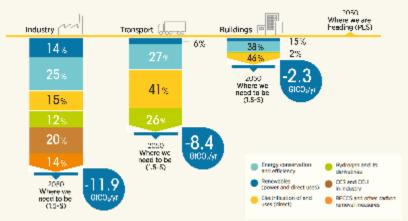
Ownership and governance – Spain's largest non-profit renewable energy co-operative, Som Energia now supplies 125,000 customers with renewable electricity.

Enercoop

Location/policy environment - Energoop is France's largest 100% renewable energy supplier in a country that derives 10%, of its electricity from renewable sources.

Ownership and governance – Enercoop's decentralised approach to organisation enables it to work on energy issues at a local level, it now has over 55,000 members in II co-operatives operating across France.

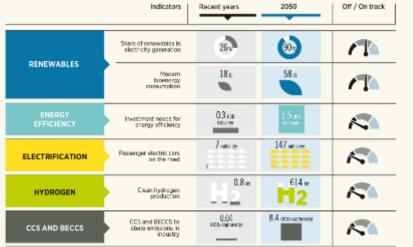

Ideal Storage for GW-Scale Solar – Large-Scale Pumped Hydro


Selection of storage technology depends on the service they can provide

- Different storage technologies for different power system services. No one size fits all – fast response services, energy arbitrage, long term duration, e-mobility
- Pumped hydro continues to dominate global market with > 90% of energy storage installed capacity
- On battery chemistry lithium-ion cell price has a 98% dropped between 1991-2018 driven by e-mobility reaching around 100 USD/kWh
- For long duration storage [> 8h] with solar CSP + molten salt is at the moment the commercial solution

Expected that all battery chemistries will reduce cost > 50% between 2016 and 2030

Sources: https://irena.org/-/media/Files/IRENA/Agency/Publication/2020/Mar/IRENA_storage_valuation_2020.pdf and https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2022/Mar/IRENA_Tech_Innovation_Indicators_2022_.pdf


The Hydrogen factor

Hydrogen has a role in **reducing emissions** from HTDS of aviation, heavy transport and heavy industry **Nearly 70% hydrogen will be green hydrogen from renewable energy.** 45 countries with a published hydrogen strategy or drafting it (June 2022)

More is needed to develop Green Hydrogen

Tracking progress of key energy system components

- Create demand for green hydrogen
- Finance and build renewable electricity
- Speed up ramp up of electrolyser manufacturing
- **Reduce the cost** of electrolysers (40% cheaper in the short-term (2030) and up to 80% longer term) to make competitive with fossil fuels
- Collaborate to establish harmonised international hydrogen certifications and standards for hydrogen trade

Latest Advancements in Solar Energy

Average yearly module prices by technology sold in Europe

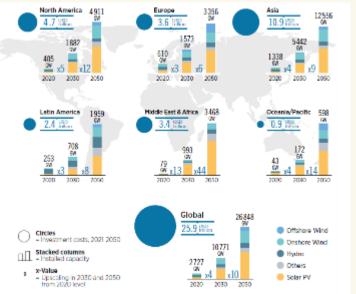
All black High efficiency High afficiency High afficiency Low cost Chacket 0.6410.626 0.6 0.537 0.5110.5 0,430 0.427 0.4120.42021 USD/W 0.403 402 0.402 0.396 0 377 0.343 0.3120.3 0.305 0.294 0.278 0.2040.2 0.193 0.1

2019 2020 2021

2022

2017 2018

Back contact colls n-type 72-cmi(/ mone S [Wp] 144-half-rell (158.75 x 158.75 85F p-type cells mc-Si [Wp] itum?) modulai PERC PERT, PERC, Topcon cells. n-type mone-Si [Wp] PERC PERT, topcon cells p-type mc/SiTWp] PERC PERT, Topcontriella p-lupe monio-S [Wp] Silicon heterojunction (HTT) cells n-type mono-Si [Wp] Average module power p-type of representative. me-Si and monu-Si [Wp] module Samer (RENA Street on VDW), international Module power [Wp]


Sources: https://www.irena.org/-

Evolution of solar PV module power

/media/Files/IRENA/Agency/Publication/2022/Jul/IRENA Renewable_Power_Generation_Costs_2021.pdf and https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2022/Mar/IRENA_Tech_Innovation_Indicators_2022_.pdf

- Utility-scale solar PV capacity factors (CF) continue to rise; supported by technology improvements including an increased use of trackers and bifacial modules
- At module design level, most efficiency improvements are due to natural evolution in enhanced cell architecture
- Cell technology development also has positive impact to **increasing module power outputs**
- One among these developments is half -cell designs to reduce current losses in the string and improving performance

What is the future of Renewable Technologies for the Region?

Middle east and Africa	Cumulative Installed Capacity in the 1.5°C Scenario (GW)	
	2020	2050
Solar PV	169	1520
Hydro	189	307
Onshore Wind	193	673
Offshore Wind	25	640
Others*	34	216

*Others include bioenergy, geothermal, CSP, and ocean energy

- Middle east and Africa regions should strongly focus on **solar PV projects**, as they will require **70 GW of yearly installations** in this decade to reach 1.5°C target
- Onshore wind installations should scale to 3 times which necessitates more than 8 GW of annual installation this decade. In addition, off-shore wind installations should also grow significantly
- Hydropower needs an annual installation of **3 GW till 2030** and a **pipeline of projects** be created in this decade to ramp up installations in later decades

Gauri Singh